CARBON-13 NMR SPECTRA OF STEROIDAL A-RING EPISULFIDES

Kazuo Tori* and Taichiro Komeno

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan

and

Jean-Michel Takam and Gabor Lukacs*

Institut de Chimie des Substances Naturelles, CNRS, 91190-Gif-sur-Yvette, France (Received in Japan 21 November 1974; received in UK for publication 2 December 1974)

In a previous paper,² we have reported a ¹³C NMR study of steroidal A-ring epoxides in connection with the configurational assignment of a three-membered ring. Comparisons of the ¹³C NMR spectra of the epoxides with those of the corresponding episulfides have much interested us in the stereochemical correlation with ¹³C chemical shifts in view of the facts that a sulfur atom has a longer van der Waals radius than an oxygen atom has, that a C-S bond of a thiirane ring is longer than a C-O bond of an oxirane ring is,³ and that some of the episulfides show characteristic biological activities.⁴

Thus, the ¹H noise-decoupled natural-abundance ¹³C FT NMR spectra of several epithio derivatives $(1-4)^5$ in the A-ring of 17 β -acetoxy-5 α -androstane $(5)^2$ have been examined in CDCl₃.[†] All ¹³C signals were assigned by means of single-frequency off-resonance decoupling (SFORD) techniques,⁷ by applications

of known chemical shift rules,⁷ and from comparisons of the spectra from compound to compound. Table 1 lists the chemical shifts δ_{C} obtained and Table 2 indicates differences in δ_{C} between epimeric pairs of the episulfides and between those of the corresponding epoxides studied previously,² and methyl substitution effects.

[†] A comprehensive study of ¹H NMR spectra of steroidal episulfides has already been reported.⁶ However, having not been described, ¹H NMR data on 3 are presented here as follows: $\delta_{\rm H}$ (CDCl₃) for H-3 β , H-4 β , H-18, and H-19 are 3.19, 2.59 (q. J = 6.8 and 3.2 Hz), 0.77, and 0.82, respectively.

	Carbon-13	Chemical Shif	t Data on	Compounds	(1-4) in	CDCI ₂	(م)
--	-----------	---------------	-----------	-----------	------	------	-------------------	-----

										—			
Compounds	C-1	C-2	C-3	C-4	C-5	C-6	C- 7	C-8	C-9	C-10	C-11	C-19	CH₃
la.	40.3	34.6 ^c	37.6 [°]	30.5 ^c	35.4 ^d	28.1	31.0	35.0 ^d	53.6	35.2	20.2	12.6	
2a	39.3	36.8 ^C	35.2 ^c	30.1 ^c	43.0	28.3	31.3	34.6	56.1	34.6	20.3	14.8	
16p	47.1 ^d	46.7 ^d	46.7 ^d	31.5 ^f	35.3 ^e	27.9	31.1 ^f	34.8 ^e	53.3	35.7	20.2	12.0	33.3
2b ^b	46.5 ^d	47.3	44 .5 ^d	31.1 ^f	43.1	28.2	31,3 ^f	34.6 ^e	56.4	34.8 ^e	20.2	13.9	33.1
le	41.2	44.3	48.5	37.4	37.0	28.0	31.0	35.3	53.5	35.3	20.3	12.6	30.5
2c	40.1	45.7	46.7	37.5	43.2	28.3	31.3	34.6	56.1	34.1	20.4	14.4	31.9
3	30.4	23.5	36.2	40.5	50.7	28.3	31.4	35.3	52.6	36.2	20.8	12.9	
4	35.0 ^d	22.5	33.5	43.0	46.4	27.5	31.8	35.3 ^d	55.2	35.7	19.9	14.4	

^a ¹³C NMR spectra were taken with a Varian NV-14 FT NMR (at 15.09 MHz) and /or a Bruker HX-90E FT NMR (at 22.63 MHz) spectrometer using TMS as an internal standard ($\delta_{\rm C}$ 0); precision of $\delta_{\rm C}$ are about ±0.1 ppm. Chemical shifts of carbons other than those cited above were only slightly affected by the structural changes in the A-ring, ¹⁰ and have already been described in the previous paper.² ^b The spectra of these compounds were not examined by SFORD owing to lack of sufficient materials. ^c These assignments have been confirmed by taking the spectra of the 3-deuterio derivatives (unpublished results). ^{d, e, f} These assignments may be reversed although those given here are preferred.

As a whole, spectral features of the episulfides shown in Table 1 are similar to those of the corresponding epoxides previously reported² except for the signal positions of the three-membered ring carbons; an episulfide ring carbon resonates at a higher field as is already known.⁷ However, detailed examinations of the data revealed some interesting differences between them.

Table 1 shows that the changes in δ_{C} of the allylic carbons (β from sulfur) are smaller upon introduction of an episulfide ring into a six-membered unsaturated ring² than upon introduction of an epoxide ring,²

TABLE 2

Differences in Chemical Shifts between Epimeric Pairs of the Episulfides and the Corresponding

Compounds to be compared	C-1	C-2	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-11	C-19
······			Diffe	rences i	n 8 ₀ be	tween e	pimers					
2a-1a	-1.0	+2.2	-2.4	-0.4	+7.6	+0.2	+0.3	-0.4	+2.5	-0.6	+0.1	+2.2
	(-0.1	+2.4	-0.2	-0.6	+5.0	0.0	+0.2	-0.7	+1.8	+0.7	-0.1	+1.1)
2b-1b	-0.6	+0.6	-2.2	-0.4	+7.8	+0.3	+0.2	-0.2	+3.1	-0.9	0.0	+1.9
	(-0.3	+1.3	-0.5	-0.4	+5.7	0.0	+0.2	-0.7	+2.0	+0.7	-0.1	+0.8)
<u>2c-lc</u>	-1.1	+1.4	-1.8	+0.1	+6.2	+0.3	+0.3	-0.7	+2.6	-1.2	+0.1	+1.8
	(-0.3	+1.8	0.0	-0.5	+4.2	0.0	+0.2	-0.6	+1.8	-0.2	0.0	+0.8)
4-3	+4.6	-1.0	-2.7	+2.5	-4.3	-0.8	+0.4	0.0	+2.6	-0.5	-0.9	+1.5
∼~2	(+3.2	-0.1	-1.6	+2.0	-0.5	-1.4	+0.4	+0.1	+2.1	+1.7	-0.6	+0.6)
			2-	Methyl	substitu	tion eff	ects					
lb-la	+6.9	+11.9	+8.9	+1.3	-0.3	-0.2	-0.1	-0.2	-0.4	+0.5	0.0	-0.6
	(+5.5	+6.6	+7.7	+0.7	-0.3	-0.1	+0.1	+0.1	+0.1	+0.5	0.0	-0.3)
2b-2a	+7.1	+10.5	+9.2	+0.9	0.0	-0.2	-0.1	-0.2	+0.1	+0.2	-0.1	-1.0
	(+5.3	+5.1	+7.4	+0.9	+0.4	-0.1	+0.1	+0.1	+0.3	+0.5	0.0	-0.6)
			3-	-Methyl	substitu	tion eff	ects					
lc-la	+1.0	+9.5	+10.7	+7.2	+1.4	-0.1	0.0	+0.3	-0.2	+0.1	+0.1	0.0
	(+0.9	+7.9	+5.5	+5.2	+1.1	0.0	0.0	0.0	0.0	+0.3	0.0	+0.1)
2c-2a	+0.7	+8.9	+11.4	+7.3	+0.1	-0.1	-0.1	-0.2	-0.1	-0.5	+0.1	-0.5
	(+0.9	+7.5	+5.7	+5.3	+0.5	0.0	0.0	+0.1	0.0	-0.6	0.0	-0.2)

Epoxides² (in Parentheses) and Methyl Substitution Effects ($\Delta\delta_{C}$ in ppm)^a

^a Plus sign indicates a downfield shift.

although the C-5 resonances of 3 and 4 were still found at considerably lower fields in comparison with those of their corresponding olefins.²

On inspection of Table 2, the steric γ effects⁷ were found to be produced on carbons bearing an axial hydrogen atom by introducing episulfide rings <u>cis</u> to the hydrogen (C-5 in 1 and C-1 in 3); they are considerably stronger as compared with those exerted by the corresponding epoxide rings.² These stronger effects result evidently from the more bulkiness of the thiirane ring than that of the oxirane ring as expected.

It should be emphasised that the bulkier S-ring also gave stronger long-range δ effects⁸ upon C-19 and C-9 resonances of both 2 and 4: these δ effects resulted in downfield shifts of about +2 and +2.5 ppm, respectively. A longer-range effect⁹ should also be noted to be discernible upon the C-11 resonance of 4.

As can be seen from Table 2, the effects of the methyl substitution at C-2 and C-3 in the episulfides

are almost similar to those in the corresponding epoxides; accordingly they do not resemble those observed

in the corresponding olefins.² The α , in particular, and β effects were found to be strengthened in the epi-

sulfide cases.

The present result that a bulkier substituent exerts stronger steric γ and δ effects appears to be useful in

¹³C NMR spectroscopy. Further studies are in progress in these laboratories.

REFERENCES

- Résonance Magnétique Nucléaire du ¹³C de Produits Naturels et Apparentés, XXIII: for Part XXII, see Y. Letourneux, Q. Khuong-Huu, M. Gut and G. Lukacs, in submission; this paper also constitutes Part XVIII of NMR Studies on Steroids by the Shionogi group: for Part XVII, see ref 2.
- (2) K. Tori, T. Komeno, M. Sangaré, B. Septe, B. Delpech, A. Ahond and G. Lukacs, <u>Tetrahedron</u> Letters 1157 (1974).
- (3) T. E. Turner and J. A. Howe, J. Chem. Phys. <u>24</u>, 924 (1956); G. L. Cunningham, Jr., A. W. Boyd, R. J. Meyers and W. D. Gwinn, <u>Ibid. 19</u>, 676 (1951). For X-ray analysis of a crystal of a derivative of <u>1a</u>, see K. Utsumi-Oda and H. Koyama, <u>J. C. S. Perkin II</u> 1866 (1973).
- (4) T. Miyake, T. Hori, G. Kato, M. Ide, N. Uchida and K. Yamaguchi, <u>Steroids 23</u>, 929 (1974), and references therein.
- (5) T. Komeno, S. Ishihara, H. Itani, H. Iwakura and K. Takeda, <u>Chem. Pharm. Bull.</u> <u>17</u>, 2110 (1969), and references cited therein.
- (6) K. Tori, T. Komeno and T. Nakagawa, J. Org. Chem. 29, 1136 (1964).
- (7) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972); G. C. Levy and G. L. Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972).
- (8) S. H. Grover, J. P. Guthrie, J. B. Stothers and C. T. Tan, J. Magn. Resonance <u>10</u>, 227 (1973);
 S. H. Grover and J. B. Stothers, Can. J. Chem. <u>52</u>, 870 (1974).
- (9) N. S. Bhacca, D. D. Giannini, W. S. Jankowski and M. E. Wolff, <u>J. Am. Chem. Soc.</u> <u>95</u>, 8421 (1973).
- (10) H. J. Reich, M. Jautelat, M. T. Messe, F. J. Weigert and J. D. Roberts, <u>Ibid. 91</u>, 7445 (1969);
 H. Eggert and C. Djerassi, J. Org. Chem. <u>38</u>, 3788 (1973).